Kelp forests are underwater areas with a high density of kelp, which covers a large part of the world's coastlines. Smaller areas of anchored kelp are called kelp beds. They are recognized as one of the most productive and dynamic on Earth. Although algal kelp forest combined with only cover 0.1% of Earth's total surface, they account for 0.9% of global primary productivity.See Fig. 3 in Kelp forests occur worldwide throughout temperate and polar region coastal oceans. In 2007, kelp forests were also discovered in tropical waters near Ecuador.
Physically formed by brown macroalgae, kelp forests provide a unique habitat for marine organisms and are a source for understanding many ecological processes. Over the last century, they have been the focus of extensive research, particularly in Trophic dynamics ecology, and continue to provoke important ideas that are relevant beyond this unique ecosystem. For example, kelp forests can influence coastal Oceanography patterns and provide many ecosystem services.
However, the influence of humans has often contributed to kelp forest degradation. Of particular concern are the effects of overfishing nearshore ecosystems, which can release from their normal population regulation and result in the overgrazing of kelp and other algae. This can rapidly result in transitions to Urchin barren where relatively few species persist. Already due to the combined effects of overfishing and climate change, kelp forests have all but disappeared in many especially vulnerable places, such as Tasmania's east coast and the coast of Northern California. The implementation of marine protected areas is one management strategy useful for addressing such issues, since it may limit the impacts of fishing and buffer the ecosystem from additive effects of other environmental stressors.
A wide range of sea life uses kelp forests for protection or food, including fish. In the North Pacific kelp forests, particularly Sebastidae, and many , such as , shrimp, , , and . Many marine mammals and birds are also found, including seals, sea lions, whales, , gulls, terns, , great blue herons, and cormorants, as well as some shore birds. Kelp forests provide habitat for a variety of invertebrates, fish, marine mammals, and birds NOAA. Updated 11 January 2013. Retrieved 15 January 2014.
Frequently considered an ecosystem engineer, kelp provides a physical substrate and habitat for kelp forest communities. In algae (kingdom Protista), the body of an individual organism is known as a thallus rather than as a plant (kingdom Plantae). The morphological structure of a kelp thallus is defined by three basic structural units:
The environmental factors necessary for kelp to survive include hard substrate (usually rock or sand), high nutrients (e.g., nitrogen, phosphorus), and light (minimum annual irradiance dose > 50 E m−2). Especially productive kelp forests tend to be associated with areas of significant oceanographic upwelling, a process that delivers cool, nutrient-rich water from depth to the ocean's mixed layer. Water flow and turbulence facilitate nutrient assimilation across kelp fronds throughout the water column. Water clarity affects the depth to which sufficient light can be transmitted. In ideal conditions, giant kelp ( Macrocystis spp.) can grow as much as 30–60 cm vertically per day. Some species, such as Nereocystis, are annual plant, while others such as Eisenia are perennial plant, living for more than 20 years. In perennial kelp forests, maximum growth rates occur during upwelling months (typically spring and summer) and die-backs correspond to reduced nutrient availability, shorter photoperiods, and increased storm frequency.
Kelps are primarily associated with temperate and arctic waters worldwide. Of the more dominant genera, Laminaria is mainly associated with both sides of the Atlantic Ocean and the coasts of China and Japan; Ecklonia is found in Australia, New Zealand, and South Africa; and Macrocystis occurs throughout the northeastern and southeastern Pacific Ocean, Southern Ocean archipelagos, and in patches around Australia, New Zealand, and South Africa. The region with the greatest diversity of kelps (>20 species) is the northeastern Pacific, from north of San Francisco, California, to the Aleutian Islands, Alaska.
Although kelp forests are unknown in tropical surface waters, a few species of Laminaria have been known to occur exclusively in tropical deep waters.Petrov, J.E., M.V. Suchovejeva and G.V. Avdejev. 1973. New species of the genus Laminaria from the Philippine Sea. Nov Sistem. Nizch. Rast. 10: 59–61. This general absence of kelp from the tropics is believed to be mostly due to insufficient nutrient levels associated with warm, waters. One recent study spatially overlaid the requisite physical parameters for kelp with mean oceanographic conditions and produced a model predicting the existence of subsurface kelps throughout the tropics worldwide to depths of . For a hotspot in the Galapagos Islands, the local model was improved with fine-scale data and tested; the research team found thriving kelp forests in all eight of their sampled sites, all of which had been predicted by the model, thus validating their approach. This suggests that their global model might actually be fairly accurate, and if so, kelp forests would be prolific in tropical subsurface waters worldwide. The importance of this contribution has been rapidly acknowledged within the scientific community and has prompted an entirely new trajectory of kelp forest research, highlighting the potential for kelp forests to provide marine organisms spatial refuge under climate change and providing possible explanations for evolutionary patterns of kelps worldwide.
Multiple kelp species often co-exist within a forest; the term understory canopy refers to the stipitate and prostrate kelps. For example, a Macrocystis canopy may extend many meters above the seafloor towards the ocean surface, while an understory of the kelps Eisenia and Pterygophora reaches upward only a few meters. Beneath these kelps, a benthic assemblage of foliose red algae may occur. The dense vertical infrastructure with overlying canopy forms a system of microenvironments similar to those observed in a terrestrial forest, with a sunny canopy region, a partially shaded middle, and darkened seafloor. Each guild has associated organisms, which vary in their levels of dependence on the habitat, and the assemblage of these organisms can vary with kelp morphologies. For example, in California, Macrocystis pyrifera forests, the nudibranch Melibe leonina, and skeleton shrimp Caprella californica are closely associated with surface canopies; the kelp perch Brachyistius frenatus, rockfish Sebastes spp., and many other fishes are found within the stipitate understory; brittle stars and turban snails Tegula spp. are closely associated with the kelp holdfast, while various herbivores, such as sea urchins and abalone, live under the prostrate canopy; many seastars, hydroids, and benthic fishes live among the benthic assemblages; solitary corals, various gastropods, and echinoderms live over the encrusting coralline algae. In addition, and marine mammals are loosely associated with kelp forests, usually interacting near the edges as they visit to feed on resident organisms.
The transition from macroalgal (i.e. kelp forest) to denuded landscapes dominated by sea urchins (or 'urchin barrens') is a widespread phenomenon,Lawrence, J.M. 1975. On the relationships between marine plants and sea urchins. Oceanography and Marine Biology, An Annual Review. 13: 213–286. often resulting from trophic cascades like those described above; the two phases are regarded as alternative stable states of the ecosystem. The recovery of kelp forests from barren states has been documented following dramatic perturbations, such as urchin disease or large shifts in thermal conditions. Recovery from intermediate states of deterioration is less predictable and depends on a combination of abiotic factors and biotic interactions in each case.
Though urchins are usually the dominant herbivores, others with significant interaction strengths include starfish, isopods, kelp crabs, and herbivorous fishes. In many cases, these organisms feed on kelp that has been dislodged from substrate and drifts near the ocean floor rather than expend energy searching for intact thalli on which to feed. When sufficient drift kelp is available, herbivorous grazers do not exert pressure on attached thalli; when drift subsidies are unavailable, grazers directly impact the physical structure of the ecosystem. Many studies in Southern California have demonstrated that the availability of drift kelp specifically influences the foraging behavior of sea urchins. Drift kelp and kelp-derived particulate matter have also been important in subsidizing adjacent habitats, such as sandy beaches and the rocky intertidal.
In addition to ecological monitoring of kelp forests before, during, and after such disturbances, scientists try to tease apart the intricacies of kelp forest dynamics using experimental manipulations. By working on smaller spatial-temporal scales, they can control for the presence or absence of specific biotic and abiotic factors to discover the operative mechanisms. For example, in southern Australia, manipulations of kelp canopy types demonstrated that the relative amount of Ecklonia radiata in a canopy could be used to predict understory species assemblages; consequently, the proportion of E. radiata can be used as an indicator of other species occurring in the environment.
Modern economies are based on fisheries of kelp-associated species such as lobster and rockfish. Humans can also harvest kelp directly to feed aquaculture species such as abalone and to extract the compound alginic acid, which is used in products like toothpaste and antacids. Kelp forests are valued for recreational activities such as SCUBA diving and kayaking; the industries that support these sports represent one benefit related to the ecosystem and the enjoyment derived from these activities represents another. All of these are examples of ecosystem services provided specifically by kelp forests. The Monterey Bay aquarium was the first aquarium to exhibit an alive kelp forest.
Major issues of concern include marine pollution and water quality, kelp harvesting and fisheries, invasive species, and climate change. The most pressing threat to kelp forest preservation may be the overfishing of coastal ecosystems, which by removing higher trophic levels facilitates their shift to depauperate urchin barrens. The maintenance of biodiversity is recognized as a way of generally stabilizing ecosystems and their services through mechanisms such as functional compensation and reduced susceptibility to foreign species invasions. More recently, the 2022 IPCC report states that kelp and other seaweeds in most regions are undergoing mass mortalities from high temperature extremes and range shifts from warming, as they are stationary and cannot adapt quick enough to deal with the rapidly increasing temperature of the Earth and thus, the ocean.
In many places, managers have opted to regulate the harvest of kelp and/or the taking of kelp forest species by fisheries. While these may be effective in one sense, they do not necessarily protect the entirety of the ecosystem. Marine protected areas (MPAs) offer a unique solution that encompasses not only target species for harvesting, but also the interactions surrounding them and the local environment as a whole. Direct benefits of MPAs to fisheries (for example, spillover effects) have been well documented around the world. Indirect benefits have also been shown for several cases among species such as abalone and fishes in Central California. Most importantly, MPAs can be effective at protecting existing kelp forest ecosystems and may also allow for the regeneration of those that have been affected. A 2023 report by the United Nations Environment Programme noted that kelp forest restoration efforts have become more widespread in recent decades, and may provide economic benefits to nearby coastal communities.
Kelp bed recovery efforts in California are primarily focusing on sea urchin removal, both by scuba divers, and by , which are natural predators.
A brown alga, Sargassum horneri, an invasive species first spotted in 2003, has also been a concern.
The Sunflower sea star is an important keystone species which helps control sea urchin abundance, but an outbreak of Sea star wasting disease and a vulnerability to climate change has led to its critical endangerment.
Researchers at the Bodega Marine Laboratory of UC Davis are developing replanting strategies, and volunteers of the Orange County Coastkeeper group are replanting giant kelp. Humboldt State University began cultivating bull kelp in its research farm in 2021.
Research efforts at the state level to prevent kelp forest collapse in California were announced in July 2020.
At the federal level, H.R. 4458, the Keeping Ecosystems Living and Productive (KELP) Act, introduced July 29, 2021, seeks to establish a new grant program within NOAA for kelp forest restoration.
Ocean Rainforest, a Faroe Islands-based company, secured $4.5 million in U.S. government funding to grow giant kelp on an 86-acre farm off the coast of Santa Barbara, California.
|
|